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Abstract: Defect detection is now an active research area for production quality assurance. Traditional visual inspection
systems are developed by human beings, which is a time-consuming, labour-intensive, and highly error-prone process, and are
therefore unreliable. To overcome these problems, the authors proposed a new method for detecting defects when printing on a
3D micro-textured surface. They utilise an orientation code as the basis to resist the fluctuations in illumination. Based on the
consistency of the pixel pairs, they developed a model called multiple paired pixel consistency to represent the statistical
relationship between each pixel pair in defect-free images. Finally, based on this model, they designed a defect detection
method. Even with different defect sizes, illumination conditions, noise intensities, and other characteristics, the performance of
the proposed algorithm is extremely stable and highly accurate, and the recall, precision, and F-measure in most of the results
can reach 0.85,0.93, and 0.9, respectively. In addition, the defect detection rate can reach almost 100%. This demonstrates that
the authors' approach can achieve state-of-the-art accuracy in real industrial applications.

1 Introduction
Defect detection plays an important role in the quality control (QC)
of the manufacturing industry. In addition, the application of
computer vision in an automatic quality inspection has been widely
studied because an increasing number of factories have begun
using automatic production lines. We are interested in assessing
how currently available vision systems perform a variety of QC
tasks on printed products. We mainly consider the inspection of
printed characters/text or logotypes for defects, such as holes,
scratches, dents, and foreign objects.

At present, the printing quality is often assessed by human
inspectors, which is a labour-intensive and time-consuming job.
However, the results of an inspection might be unreliable because
humans may give different results depending on the time, mood,
skills, and experience of the inspectors. In addition, human
inspection is subjective because there is no quality standard
independent of the operator. To solve these problems, human
inspection is being replaced by automatic visual inspection systems
[1].

Texture is an important feature of defect detection. In fact, the
task of detecting defects is largely seen as a texture analysis
problem. Xie [2] provided a comprehensive review of defect
detection in textures, and classified texture analysis techniques into
four categories: statistical [3], structural [4, 5], filter-based [6, 7],
and model-based [8] methods. (1) Statistical approaches detect
defects by measuring the spatial distribution to evaluate the
textures, including histogram properties [9], co-occurrence
matrices [10], autocorrelation [11], and local binary patterns [12].
In [12], a new noise-resistant version of LBP was proposed to
extract colour and texture features jointly, and then utilise these
features for defect detection. These methods are extremely
effective for detecting defects on regular textures and are simple to
implement. (2) Structural approaches usually consider texture to be
characterised by texture primitives, and the spatial arrangement of
these primitives [13]. A structural method of fabric image defect
recognition was proposed in [14]. First, a texture image is
threshold processed through a histogram analysis, and is mapped to
a skeleton representation. Finally, histograms of the skeleton
position and length are measured to identify and locate defects.

Such approaches [15, 16] perform well on extremely regular
textures. However, utilising structural methods to detect defects has
certain drawbacks, i.e., they are not applicable to structures with a
low degree of regularity or small defects. (3) Filter-based
approaches can be divided into spatial-domain, frequency-domain,
and joint-domain techniques. These methods apply filter banks to
an image for computing the energy of the filter responses, which
include the Fourier transform (FT) [17], Gabor transform [18], and
orthogonal wavelet transform [19]. They are effective and simple
to implement, but are ineffective with images with a complex
texture. (4) Model-based approaches first extract texture features
from an image through modelling and parameter estimation, and
then discriminate whether a test image conforms to the normal
texture model to realise a defect detection. Such approaches
include the Gaussian–Markov random field [20] model and the
Gaussian mixture model [21] as representatives. Their results have
been satisfactory; however, the computational complexity is high,
and they are not good at detecting small defects.

Deep-learning based defect detection approaches have also
attracted significant attention. Tao et al. [22] proposed a twofold
procedure to localise and classify metallic defects. First, a novel
cascaded autoencoder (CASAE) architecture is utilised to localise
the defect and then classify it using a convolutional neural network
(CNN). Li et al. [23] utilised a compact CNN architecture that
applies microarchitectures with a multilayer perceptron to optimise
the detection of fabric defects. Krummenacher et al. [24] utilised
novel general wavelet features and features learned from deep
CNNs to detect wheel defects. However, unlike other application
fields where it is easy to collect training samples, it is difficult to
obtain defective samples in the field of industrial manufacturing
because the probability of defects occurring in industrial
manufacturing is extremely low. In addition, manually labelling the
training dataset is a time-consuming and laborious task.

Herein, we deal with a printed logotype on a surface embossed
with randomly distributed 3D micro-textures, as shown in Fig. 1. 
This type of surface is made using embossing processes for
creating tiny mixed convex and concave patterns on the surfaces of
metal, plastic, or other materials. Due to they have an attractive
appearance, good handling, and excellent slip resistance, such
surfaces have been widely used in numerous products. Their three-
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dimensional (3D) microstructures, which are uniformly embossed
on the surface, produce slight shadows under illumination and
appear as a random texture in an image. The changes in
illumination on such surfaces have a significant influence on the
appearance, which causes difficulties in defect detection. We
proposed another method for defect detection in background
regions, called an accumulated and aggregated shifting of intensity,
in short AASI [25], for the same type of surfaces. In this study, we
concentrate on a different problem of defect detection on printed
logotypes on the same objects. Although the target surfaces in the
products are the same, because their logotypes have different types
of defects and the statistical characteristics of the images observed
from defect-free objects are very different from their backgrounds,
a novel scheme for their detection is needed, as shown herein.
From Fig. 1, we can see that the gradient images of typical defect-
free and defective images have large differences or fluctuations
within the entire area of the logotype, which makes its utilisation
for defect detection difficult. Instead of a gradient feature, we
propose the use of orientation code matching (OCM) [26] as a
robust matching or registration. Comparing the orientation code
(OC) images of defect-free and defective parts shown in Fig. 1, we
find a certain similarity in the defect-free part, whereas there is
rather prominent variation in the defective part, which shows that it
may be possible to utilise the OC as the basis of our development.

We need another technique to develop a model of the statistical
relationship between pixels in logotypes that require precision and
robustness even in noisy situations. Liang et al. [27] proposed a co-
occurrence probability-based pixel pair (CP3) background model
for robust background subtraction, which is suited to our purposes.

Here, we propose a new approach for robust defect detection
that utilises two principles: OCs and their statistical relationship
between a pixel and its supporting pixels. The OCs are used for
extracting the texture features of the image at a location with
contrast, not only at an edge, and an analysis of the statistical
relationship in the OCs of different pairs of pixels is conducted to
obtain a defect-free model for each pixel in the logotype. We show
the effectiveness of our approach experimentally for printed

regions, such as logotypes, characters, and symbols, on embossed
surfaces. Furthermore, based on this modelling, we propose an
algorithm for defect detection mainly in the logotype regions,
which any customer maybe sensitive to check the quality of their
printing.

The proposed model of defect-free images, called multiple
paired pixel consistency (MPPC), was briefly introduced in [28]. In
this paper, we introduce MPPC with new contents and give more
detailed explanations for our work with new experimental results.
First, to obtain more precise detection results, we propose a precise
spatial differentiation for achieving better spatial sensitivity. In
addition, we utilise kurtosis to determine the potential distribution
and analyse the statistical relationship of any pair of pixels. We
then use an original filter. Finally, we confirm the performance of
the proposed method through some comparative experiments. Our
contributions of this paper are as follows: (i) this work proposes the
MPPC defect-free model to realise the robustness of illumination
fluctuations and noise for detecting the defect in logotypes printed
on 3D micro-textured surfaces; (ii) the MPPC model is sensitive to
small and vague defects. Owing our model is based on a single
Gaussian model which is more sensitive, robust, and efficient, for
example, than the Gaussian mixture model; (iii) only a small
number of positive samples are utilised to define or train the pixel-
wise elemental models, whereas in deep learning approaches, one
may need two balanced training sets of defect-free and defective
images that are not easy to achieve in general owing to the high-
quality control required. In addition, our method works in pixel-
wise rather than region. This can detect defects more precisely. Fig.
2 shows the overall block diagram of the proposed method. It
contains three main parts: pre-processing, the proposed MPPC
method, and post-processing. First, we converted the training
image from the grey-scale image to the OC image, and then used
the obtained OC image to generate the MPPC model. Third, we
used the obtained MPPC to carry out a defect detection on the test
image, and finally, output the final detection result with the
proposed filtering algorithm. The remaining of this paper is
organised as follows. Section 2 describes an improvement in the

Fig. 1  Examples of printed characters
(a) Defect-free and, (b) Defective. From the leftmost column: raw, gradient, and OC images

 

Fig. 2  Overall block diagram
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OCs and statistical modelling. Section 3 introduces the working
mechanism of the MPPC defect-free model. Section 4 presents the
defect detection using the MPPC model. Section 4.1 introduces an
original filtering for improving the performance of the proposed
method, and to show the effectiveness of the proposed method
some experimental results are given in Section 5. Finally, some
concluding remarks are given in Section 6.

2 Improvement of OCs
In this section, we first introduce the original version of the OCs
and then extend it by providing two types of operation, namely, a
precise spatial differentiation for calculating the codes with a
higher resolution and the signed difference between any two codes
as a preparation for developing a more precise statistical model of
their differences. Using these operations, we introduce a more
precise scheme to describe the statistical relationship in a pair of
any pixels on the logotypes.

2.1 Orientation codes

The OCs were proposed for applying a filtering to extract the
robust features based on only the orientation information involved
in gradient vectors from any images. This approach achieves strong
robustness to an image representation and can resist the
fluctuations in the illumination in the real world because it utilises
only a gradient orientation as a discriminative feature, which
represents the orientation angle rather than the strength of the
gradient.

Let I i, j  be the brightness of pixel i, j . Its partial derivatives
in the horizontal and vertical directions are written as follows:

∇Ix =
∂I

∂x
(1)

and

∇Iy =
∂I

∂y
(2)

The orientation angle θ can be computed using

θ = tan−1 ∇Iy

∇Ix
(3)

of which the actual orientation is determined after checking the
signs of the derivatives, thus making the range of θ be 0, 2π . The
OC is obtained by quantifying the orientation angle θ into N levels

with a constant width Δθ = 2π /N . The OC can be expressed as
follows:

Ci, j =
θi, j

Δθ
▽ Ix + ▽ Iy ≥ Γ

N otherwise
(4)

where Γ is a threshold level for ignoring pixels with low-contrast
neighbourhoods. The pixels with neighbourhoods of sufficient
contrast are assigned an OC of 0, 1, …, N − 1 , whereas the
ignored pixels are assigned the code N. Fig. 3 shows the code
system used in this paper, where Γ = 10 and N = 16. 

2.2 Signed difference in OC

Herein, we propose a somewhat new definition in an OC space,
which is better suited for the more detailed statistical design than
the original. In comparison with the previous definition [26], the
definition used here has both positive and negative differences. We
expect it to give a more complete and precise distribution of the
differences in OC that facilitates a statistical handling. This is
expressed as follows:

Δ a, b =

a − b − N if b ≤
N

2
− 1 and a − b ≥

N

2

a − b + N if b >
N

2
− 1 and a − b < −

N

2
a − b otherwise

(5)

where a and b represent the OC to be compared or subtracted, for
instance from the target and reference images, respectively, and N
shows the invalid-pixel code.

Fig. 4 schematically shows the above-mentioned definition of
the difference, which can distinguish between clockwise and anti-
clockwise orientations from a to b along the circle defining any
angles by considering the cyclicity. 

A similar scheme, the histogram of gradient (HOG) [29], was
proposed and successfully applied in numerous researches.
Compared to this scheme, OC is much simpler and has certain
other merits. In the OC approach, we do not require any gradient
strength information but only the orientation angles, and through
the fundamental experiments conducted, we found a similar
performance in terms of the robustness to fluctuations in
illumination. In the calculation of the angles, whereas HOG has
0, π , OC has a range of 0, 2π , wherein we aim to detect any

defects that are rather fine through the use of this wider resolution
in combination with a more precise differentiation operator, as
described in the next section.

2.3 Precise differentiation

In general, the Sobel operators of larger domains, for instance 3 × 3
or 5 × 5, give a stable estimation of the direction angle. However,
in this study, we aim to detect extremely small defects during the
real factory production, the manufacturing processes of which
continue to advance, and the defects occurring in actual production
lines continue to decrease. Therefore, to realise a better spatial
sensitivity, rather than greater stability, we proposed a new gradient
or differentiation operator for obtaining a higher resolution or
definition.

In (6), we define two convolution matrices for the gradient
operator in a 2 × 2 region.

Gx =
−1 1

−2 2
, Gy =

2 1

−2 −1
(6)

A pixel of interest in a convolution matrix is defined at the
lower-left position in this 2 × 2 region and may have a weight of
−2; the neighbouring pixels along the x and y axes, then have a
weight of +2, whereas the neighbouring pairs of pixels have a
weight of −1 or +1, allowing a smoothing effect for de-noising.

Fig. 5 shows three typical examples used to evaluate the
sensitivity by comparing the proposed operator with a Roberts

Fig. 3  Sixteen-OC
 

Fig. 4  Scheme of signed difference in OC
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operator of 2 × 2 domains as a representative small operator
through the use of a standard Lena image.

Comparing the results in Sections 2 and 3 in particular, we can
see that the proposed operator can represent much finer structures
in their corners, lids, and lashes than the Roberts operator, whereas
we do not have a significant increase in the noise levels.

3 Multiple paired pixel consistency
3.1 Kurtosis-based statistical analysis for defect-free images
of logotypes

Recall that our aim is to detect defects in logotypes on embossed
surfaces that may behave as random textured logotypes. Due to
logotypes may be printed using the same pattern, based on a
fundamental assumption regarding the design of a statistical model,
and despite the randomness of the surfaces, it is expected that they
will have a similar texture at the same position.

As the first step towards modelling the statistical behaviour of
pixels on a logotype on an embossed surface, we consider the
relationship between any pair of two pixels on the logotype. In this
study, the objects do not have strong colours, and thus we handle
their monochrome versions here. By use of a precise operator of
differentiation and the OCs mentioned above, we can expect to
extract stable statistical characteristics even under fluctuating
illumination conditions. Fig. 6 shows two pairs of pixels. In one
pair, both pixels are on the logotype, whereas in the other pair one
pixel is on the logotype and the other is on the background. Here,
we aim to investigate what type of relation any pair of pixels in
different locations has in the OC difference. We randomly select P
on a logotype as a target pixel, an arbitrary pixel QL on the

logotype part, and an arbitrary pixel QB in the unprinted or
background part. Fig. 7 shows two typical examples of OC
difference histograms made from a dataset of 160 logotype images. 
As an example of a typical logotype defect, such as a lack of
printing, we can see that one of the logo-background pairs P, QB ,
shown in Fig. 7b, has a wide variance compared with the logo-logo
pairs P, QL  shown in Fig. 7a, where the profile has a clear peak as
another prominent feature in comparison with the latter; we can
also see a symmetric property around the mean or centre value.
From this observation and the rareness of the defects occurring in
actual factories, we assume that they can basically be fitted by a
single Gaussian distribution.

Their kurtoses are calculated to find their potential distributions.
We found that the kurtosis of the histogram in Fig. 7a was 0.0065,
which is close to 0, making it reasonable to fit or model using a
single Gaussian distribution. The histogram can be modelled by the
single Gaussian distribution

1
2.3 ∗ 2π

exp −
(x − ( − 0.56))2

2 ∗ 2.32 (7)

with a mean of −0.56 and a standard deviation of 2.3. By contrast,
for a histogram of logo-background pairs P, QB  in Fig. 7b, the
calculated kurtosis was −1.2, which shows that it can be modelled
using a uniform distribution. Fig. 7b can be fitted with a uniform
distribution 1/(6.275 − ( − 8.275)) because their mean and
variance are −1 and 17.6, respectively.

To verify the universality or reproducibility of the above
mentioned phenomena, for ten randomly selected target pixels P
we constructed ten sets of 20 pixels Q, each of which included ten
suitable pixels and another ten unsuitable pixels based on the
covariance-based measure introduced, i.e. γ, defined in (13).

Fig. 8 shows the distribution of their kurtoses with respect to
the γ values, resulting in two clear clusters of suitable or highly
correlated pairs and unsuitable pairs of P and Q, each of which
includes 100 kurtoses. The former cluster located in the upper-right
area at approximately 0 shows that Gaussian distributions in the
statistical models, whereas the latter cluster in the lower-left, at
approximately −1.2, shows a uniform distribution.

Fig. 5  Examples of applying the proposed and Roberts operators
(a) Lena, (b) Magnified parts, (c) Roberts operator, and, (d) Proposed operator

 

Fig. 6  Observing and comparing OC difference histograms
 

Fig. 7  Two representative types of OC difference in a pair of pixels
(a) Logo-logo pair (PQL), (b) Logo-background pair (PQB)
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In these statistical analyses of the histograms, we utilise the
signed difference introduced in Section 2, and in the next section
demonstrate the extremely important roles of these models. Based
on these observations, we ascertain the following significant
differences in the behaviours of these pairs: logo-logo pixel pairs
may generally have an extremely high correlation owing to the
logotype printing, whereas logo-background pairs have no clear
correlative relation. We expect the latter type of pair to possibly be
used to represent typical defects, such as a lack of printing.

3.2 MPPC defect-free model

Fig. 9 shows a schematic structure of the proposed MPPC model,
which can represent one statistical characteristic in the OC
difference between two elemental pixels among the pairs. The main
idea of this statistical modelling of images is called ‘CP3’, which
was previously proposed by Liang et al. [27] for robust background
subtraction. We propose an extension of this scheme by introducing
the cohesive relationship of OCs in logo-logo pairs defined
between each target pixel P on a logotype and the set of supporting
pixels, also on the same logotype, which should be selected to
achieve a higher consistency or correlation with the target pixel. In
other words, similar trends of change as the target pixel are shown,
for which we can make a statistical model by fitting a single
Gaussian distribution to the OC difference histogram of these pairs
with high consistency.

We now consider how to select the supporting pixels from all
candidate pixels for a target pixel. For an arbitrary logo-logo pixel
pair P, Q , we have two sets of OC sequences at the same
positions in all K training images as follows:

P = p1, p2, …, pK (8)

and

Q = q1, q2, …, qK , (9)

where K is the total number of training sample images, as shown in
Fig. 9.

For formalisation, in this paper, we use capital letters in bold
face, such as Q, to represent any set, capital letters in normal font
to represent any pixel, and lowercase letters to show any OCs of
the pixels.

The expected values and variances over P and Q are defined as
follows:

p̄ = 1/K ∑
k = 1

K

pk, q̄ = 1/K ∑
k = 1

K

qk, (10)

σP
2 =

1
K

∑
k = 1

K

pk − p̄
2, σQ

2 =
1
K

∑
k = 1

K

qk − q̄
2 . (11)

The covariance between P and Q is defined as follows:

CP, Q =
1
K

∑
k = 1

K

pk − p̄ qk − q̄ (12)

If CP, Q > 0, a consistency or co-occurrence probability occurs,
and to measure the consistency quantitatively, we use the following
Pearson's product-moment correlation coefficient

γP, Q =
CP, Q

σP ⋅ σQ
(13)

where σP and σQ are the standard deviations of P and Q,
respectively.

For all pixels P u, v  at the position u, v  over the full regions
covering the logotype, we may have M − 1 candidate pixels in the
same logotype, where M properly defines the total size of the
logotype in pixels. The position of P does not vary for every edge
pixel, but for all pixels in the logotype. From these candidates, we
can select N < M  supporting pixels in descending order of the
value of γP, Q. The set of N supporting pixels is as follows:

Q = Qi ui, vi γP, Qi
≥ γP, Qi + 1 i = 1, 2, …, N (14)

We assume that each supporting pixel Qi maintains a bivariate
OC difference with the target pixel P as follows:

Δ p, qi ∼ N μi, σi (15)

where N μi, σi  is the Gaussian distribution with a mean μi and
variance σi

2, which are calculated from the corresponding pixel sets
P and Q.

After modelling for one target pixel P, the above set of N pairs
of four parameters for the position ui, vi and the two statistical
parameters μi and σi are recorded in a row of the look-up table
(LUT). Through repetitive modelling, the LUT is filled in to
include the total set of MPPC models for all pixels in an elemental
logotype.

4 Defect detection by MPPC
We now discuss how to utilise the proposed MPPC model of the
relationship between pixel pairs in a defect-free logotype for
detecting many types of logotype defects. Due to the MPPC model
can represent the statistical behaviour of the relation of an
individual target pixel to the supporting pixels around it, we utilise
it to statistically test whether a target pixel is recognised as a
reasonable sample from the distribution registered in the LUT. The
scheme for the defect detection algorithm applied is shown in Fig.
10.

Fig. 8  Kurtosis distribution for two types of pixel pairs
 

Fig. 9  Scheme of MPPC modelling
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There are several types of defects, including dust or particles,
scratches, misprints, hairs, and spit, the characteristics of which
include a random alignment, texture, shape, or size. Due to the high
performance quality control in production lines, these defects may
be extremely small, and furthermore, we should also keep in mind
their very low probability of occurrence. In addition, in this study,
we also need to deal with the randomness in embossed surfaces.

Thus, these fundamental characteristics lead us to approaches
based on a pixel-wise evaluation for detection. Afterwards, we may
proceed with some following steps to recognise aggregated regions
that reveal some common characteristics. From these
considerations and the investigation described in Section 3, the two
features of our MPPC model, spatial sparseness and high
consistency in a correlative relation, can be utilised to handle such
defects. The former may prevent any defects from occupying P and
some supporting pixels simultaneously, and through the use of the
latter feature we then expect to have an evaluation scheme to
recognise whether P is occupied with any defects.

The next task must be to design a measure for judging defective
pixels or defect-free pixels using the MPPC model. We first test
each OC difference between the target pixel P and a supporting
pixel Q in the MPPC model or the LUT by applying Q for P in the
target image. We define the following measure:

βi =
1 ∥ Δ p, qi − μi ∥ ≥ C ⋅ σi

0 otherwise
, (16)

to identify the normal (βi = 0) or abnormal (βi = 1) states at the
corresponding position defined by the elemental MPPC model,
where the constant C is a parameter that can be set from 1 to 3 to
define an area for an acceptance probability of 68–99.7%. Finally,
we use the total sum

ξ =
1
N

∑
i = 1

N

βi, (17)

to construct a decision rule for the occupation of P by any
particular defect, ξ ≥ T , where T = (1/N) floor N /2 + 1  is a
threshold for the general majority rule, and N is the total number of
supporting pixels. Pseudo-codes for defect detection are shown in
Algorithm 1 (see Fig. 11). 

4.1 Post-filtering

Fig. 12 shows an example of a detection result, where the white
and black dots represent detected defective pixels and defect-free
pixels, respectively. To check the fundamental performance of the
proposed detection algorithm, we used a synthesised image in
which the real logotype ‘H’ was embedded by copies from a
background region of the same shape and size as the white square
in the ground truth image. Numerous over detections can be seen in
the background and numerous under detections can be found in the
defect region. An over detection indicates that the pixels have
pseudo-defective characteristics but are defect-free in reality,
whereas an under detection of pixels means the exact opposite.
Observing the detection result, we can also see the high density of
white dots in the true defective region and the sparseness of white
dots in the defect-free area, which indicate the effectiveness of the
proposed algorithm described in the previous chapter. In general,
any defect must be a closed, continuous, and solid area. However,
our method classifies each pixel independently. Therefore, there is
a gap between the pixel-based MPPC and the region-based defect.
To overcome this problem, we designed the following simple
morphological filter.

Fig. 13 outlines the definitions of true positives (TPs), false
positive (FPs), true negatives (TNs), and false negatives (FNs) in
the defect detection. 

Here, we introduce the idea of connected component labelling
[30], in which any connected region of the size less of than a
threshold Th is removed as FPs, and Th is a threshold that can be
adjusted to achieve the desired result. We utilised 100 experimental
results from MPPC to check the size of the connected components
in the defect-free areas. We observed that over 99% of the
population of the connected components of a size of less than 5
pixels. Based on this, we estimated a reasonable value of Th, which
is likely to be 5 in this study. For FN pixels, however, we utilise the
closing morphological operator [31], which is defined as follows:

Y ⋅ M = Y ⊕ M ⊖ M, (18)

Fig. 10  Scheme of defect detection when using the MPPC model
 

Fig. 11  Algorithm 1: Defect detection
 

Fig. 12  Example of detection result
(a) Ground truth image and, (b) Detection result
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where Y is any binary image from MPPC; ⊕ and ⊖ are dilation
and erosion operators, respectively; and M is a mask matrix of with
a size of 5 × 5. This size is determined experimentally and meets
our requirements, where we used the 3 × 3, 5 × 5, 7 × 7 to filter
100 experimental results. The average values of recall and
precision for 3 × 3, are 0.74 and 0.96; for 5 × 5, are 0.86 and 0.95;
for 7 × 7, are 0.90 and 0.82. The best result is 5 × 5 here. From
these experiences, we found that the smaller filter keeps many
holes unchanged, while the larger sizes can easily lead to excessive
filtering for small defects. Moreover, at the resolution of the
training data set, we observed that defects with a size of less than
5 × 5 are generally not easily noticeable by customers.

5 Experiments
5.1 Specifications

Fig. 14 shows portions of real defect images for the experiments
conducted in this study, which were collected in factories. All
defect images have the corresponding ground truth images, and the
defect-free area is represented as black and the defective area as
white. We utilise the six sets of real images from the factory, which
consists of the six characters ‘H’, ‘U’, ‘A’, ‘W’, ‘E’, and ‘I’, each
of which includes 160 defect-free images that cover five different
illumination conditions: darker, dark, normal, bright, and brighter.
We chose 60 defect-free images taken under the five different
illumination conditions to train the MPPC model. Through the
experiments, we set the two thresholds of the detection stage as
C = 2.0 and T = 0.5, respectively.

As the experimental images, we utilised two types of defects:
real and synthesised or artificial defects, as shown in Figs. 15 a and
b, respectively. Fig. 15a shows small dust attached to the logotype
‘H’, which we utilised as a representative to conduct the defect
detection experiments under different illumination conditions.
Here, six image sets, consisting of 20 images for the character ‘H,’
15 for ‘U,’ 20 for ‘A,’ 5 for ‘W,’ 20 for ‘E,’ and 15 for ‘I’ were
used, all of which contain real defects.

Owing to a slight difficulty in collecting real defects from
factories, we utilised some synthesised defects during the
experiments, as shown in Fig. 15b, where we first extracted a
small-square area from the background (unprinted portion) and
pasted it into the logotype (printed portion). This artificial defect is
representative of a misprinting of the logotype. As shown in Fig.
15a, one can understand to define any ground truth for the real
defects owing to the uncertainty of the boundary despite a
magnification. Therefore, we use synthesised defects to evaluate
the performance of the proposed MPPC-based detection
quantitatively. The image data used in all experiments conducted in
this paper can be downloaded from [32].

Basically, because the proposed method does not consider the
translation or rotational changes in the target images, any original
data image should be aligned in the same position and should not
have any individual rotation. In a real factory, it is not too difficult
to realise this requirement because of the quality control. However,
in this study, we realised it through three inspection procedures.
The first one is an inspection by operators in the factory where all
data were corrected using a specialised fixation tool to give them a
constant position and orientation relative to the camera. Next, we
checked their rotational constancy. Finally, all elemental logotype
images corresponding to each character were corrected regarding
their position through a registration with a normalised cross
correlation.

All experiments in this paper were conducted using MATLAB
2016a implemented on a PC with an Intel(R) Xeon(R) E5-1620
CPU with 64 GB of RAM and a 3.5 GHZ clock.

5.2 Evaluation indicators

There are several ways to evaluate the performance of defect
detection. First, pixel-level precision, recall, and F-measure are
applied to test the proposed MPPC models and the detection
algorithm for the statistical test based on the models, where our
problem is assumed as a two-class or binary classification problem
to classify any pixel into the defective class and the defect-free

class. Along with our problem of detecting defects at a pixel level,
we utilised three evaluation metrics: Precision (also known as a
positive predictive value), Recall (also known as sensitivity), and
F − measure. These are widely applied in pattern recognition,
information retrieval, and binary classification. In addition, pixel-
level defect detection is a typical binary classification problem, and
thus these three indicators can also be used for a quantitative
analysis of the defect detection. Here, Precision can be considered

Fig. 13  Definitions of TPs, FPs, TNs, and FNs in defect detection
 

Fig. 14  Some examples of real defect images
 

Fig. 15  Two types of experimental images
(a) Real and, (b) Synthesised defects
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a measure of the accuracy, whereas Recall can be considered a
measure of the defect integrity.

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

where F − measure is a harmonic average of the Precision and
Recall.

F − measure =
2 Precision ⋅ Recall
Precision + Recall

(21)

For an image-based performance evaluation [33], we utilised the
detection rate and false alarm rate as follows:

Detection Rate =
NT

NTD
(22)

False Alarm Rate =
NF

NTF
(23)

where NT, NF, NTD, and NTF are the number of correctly detected
defective logotypes or images, defect-free logotypes or images
detected as defective, the total number of defective samples, and
defect-free logotypes, respectively.

5.3 Experiments

We believe that the following factors may have an impact on the
defect detection results.

• type of defect,
• size of defect,
• shape of defect,
• illumination condition,
• noise intensity of image,
• different printed characters.

In this study, we deal with the type of defect that occurs when
some dust is attached to the logotype area. This type of defect is
the most common and is difficult to detect. We consider two types
in the experiment: fine dust and a larger foreign body. Due to our
method is pixel-based, the shape of the defect has little effect on
the test results. Next, we will describe the defect detection
performance of our method for different defect sizes, different
illumination conditions, different noise intensities, and different
printed characters.

5.3.1 Different defect sizes: We want to test how well small
defects can be detected by our algorithm. The illumination
conditions of the images used in this experiment are the same,
although the pixel sizes of the synthesised defects added in the four
types are changed to 10 × 10, 7 × 7, 5 × 5, and 3 × 3 pixels. Fig. 16
shows some examples of experimental results for different sized
defects. 

Table 1 shows the performance with respect to the change in
size. After applying the filtering algorithm mentioned in Section
4.1, most of the results show that the performance improved
substantially. Table 2 represents the image-based performance
evaluation with 400 synthesised images including the four sizes of
defects. We can see that when the defect size is greater than or
equal to a pixel resolution of 5 × 5, the detection rate can be
maintained at a high level (∼95% on average). However, defects
with a pixel resolution of 3 × 3 are slightly too small, and our
algorithm is likely to miss a detection. Therefore, we believe that
our algorithm can detect defects of greater than or equal to pixel
resolutions of 5 × 5, and ensure a high detection rate, whereas we
may need a more magnified observation if we want to detect much
smaller defects.

5.3.2 Fluctuations of illumination: Precise control of the actual
factory illumination conditions is not easy. Furthermore, it is
common in factories to have plural sets or stages of visual
inspection, which may undergo changes in the conditions over
time. The following factors can cause a variation in the
illumination conditions.

• The illumination conditions will be affected by natural light.
• The life of the light sources is limited. When we replace them, we
cannot guarantee that conditions will remain as they were before
the change.
• We cannot guarantee that the illumination conditions of each
production line are the same.
• In actual lighting, an alternating current is used, which causes the
lighting to fluctuate. In addition, as the production lines run
extremely quickly, the shutter speed of the camera used for
detection is very high. This will result in a noticeable change in the
illumination of the captured photo.

Therefore, the proposed algorithm should be robust to
fluctuations in the illumination, for which we have introduced OCs
to build the MPPC model. Here, we utilise the images of the same

Fig. 16  Some examples of defect detection with different defect sizes.
From the top row, the test images, their ground truth images, the detected
results, and the filtered results. From the leftmost column, defects with pixel
sizes of 10 × 10, 7 × 7, 5 × 5, and 3 × 3

 
Table 1 Pixel-level based performance evaluation of defect
detection under different sized defects
Size of defect Filter Recall Precision F-measure
10 × 10 OFF 0.72 0.57 0.63

ON 0.89 0.94 0.91
7 × 7 OFF 0.73 0.54 0.62

ON 0.87 0.94 0.90
5 × 5 OFF 0.68 0.51 0.59

ON 0.85 0.85 0.85
3 × 3 OFF 0.64 0.51 0.58

ON 0.86 0.72 0.79
 

Table 2 Image-based performance evaluation for different
defect sizes
Size of defect 10*10 7*7 5*5 3*3
Detection rate, % 97 96 94 61
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objects under five different illumination conditions for the
experiments, as shown in Fig. 17, which were collected from real
factories under the consideration of real illumination conditions.

There are 50 real defect images and 100 defect-free images for
each character.

Fig. 17 shows some of the detection results. Despite a severe
fluctuation in illumination, we found that the proposed method can
detect real defects similarly in size and shape from this figure,
which shows the strong robustness of the OCs in the MPPC
models.

Table 3 shows the pixel-level performance evaluation, whereas
Table 4 shows the image-based performance evaluation. From
Table 3, we can see that under different illumination conditions, the
performance of the defect detection is extremely high and achieves
similar results. A better performance of such automatic inspection
systems under changes in illumination is necessary for quality
control in numerous production lines, including those with an
international distribution.

5.3.3 Different noise intensities: In this section, we verify
whether our algorithm is robust to a certain level of noise. Here, it
can be seen that it is not easy to gather various noisy images, and
thus we utilise four types of synthesised images with different
amounts of additional noise, among which Gaussian noise was
selected. Due to we have many observed images from real
factories, we can estimate the noise level from such data, and we
found in the background part that the standard deviation of the
additional noise is approximately σ = 3 at a grey-scale with 256
levels. We utilise 100 synthetic defect images and 100 defect-free
images for each character. To create these defect-free images, we
utilise the remaining 100 defect-free images from the previous
training to conduct defect detection experiments for each character.
In addition, the synthetic defect images were generated based on
these 100 defect-free images.

Fig. 18 shows some examples of defect detection results for
different noise intensities, where it can be seen that the
performance gradually worsened along with an increase in the
noise intensity; however, up to 3σ, the proposed method could
detect the true position despite the additional noise.

From Tables 5 and 6, we can see that when the intensity of the
additional noise in the image is within approximately 2σ, the defect
detection did not deteriorate. However, in the case of 3σ, we found
a performance degradation in these experiments.

5.3.4 Different characters: In this section, we consider the
performance of defect detection for different printed characters. We
used four cases of real defects in different positions for ‘H,’ three

Fig. 17  Some examples of defect detection under different illumination
conditions. From the first row: the test images, their ground truth images,
the detection results, and the filtered results. The left columns, images from
darker to brighter illumination conditions

 
Table 3 Pixel-level performance of defect detection under
different illumination conditions
Illumination condition Filter Recall Precision F-measure
darker OFF 0.57 0.69 0.63

ON 0.80 0.97 0.88
dark OFF 0.59 0.69 0.64

ON 0.82 0.97 0.90
normal OFF 0.64 0.62 0.63

ON 0.84 0.98 0.91
bright OFF 0.61 0.63 0.62

ON 0.81 0.98 0.89
brighter OFF 0.59 0.64 0.61

ON 0.79 0.97 0.87
 

Table 4 Image-level based performance of defect detection
under different illumination conditions
Illumination condition Detection rate, % False alarm rate, %
darker 100 0
dark 100 0
normal 100 0
bright 100 0
brighter 100 0

 

Fig. 18  Some examples of defect detection with different amounts of
additional noise. From the first row: the test images, their ground truth
images, the detected results, and the filtered results. From the left column:
no additional noise, and versions with σ, 2σ, and 3σ intensity noises added

 
Table 5 Pixel-level based performance of defect detection
for different noise intensities
Noise intensity Filter Recall Precision F-measure
0 OFF 0.72 0.57 0.63

ON 0.89 0.94 0.91
σ OFF 0.68 0.56 0.61

ON 0.84 0.93 0.88
2σ OFF 0.65 0.54 0.59

ON 0.79 0.90 0.84
3σ OFF 0.64 0.53 0.58

ON 0.78 0.90 0.84
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for ‘U,’ four for ‘A,’ one for ‘W,’ four for ‘E,’ and three for ‘I,’
respectively. For the logotype ‘I,’ we need an additive explanation
because the size is relatively small. On the one hand, we cannot
find an adequate number of stable supporting pixels, which will
impact the effectiveness of our algorithm, which works in a pixel-
wise manner independent of each character. On the other hand, the
small size may cause the selected supporting pixels to become too
clustered, and thus the supporting pixels are easily affected by each
other. Therefore, we extend the area to include a part of the
neighbouring ‘E,’ as shown in Fig. 19. This figure shows some
examples of defect detection results for each character, where in
the background parts in ‘U’, ‘A,’ and ‘W,’ for instance, we have

additive noises, which are not handled in this particular paper. We
can see that the proposed method can locate most parts of the
defect area. After filtering, the over-detection noise is mostly
removed and some holes are filled in.

In this paper, we have concentrated on the logotype area and
excluded the background area (unprinted area). However, in Fig.
19, the third, fourth, and last columns contain some defects in the
background area. To solve these problems, we will extend our
algorithm to include defect detection in the background area.

Table 7 shows a pixel-level based performance evaluation,
whereas Table 8 shows the image-based performance evaluation. 

After filtering, the recall and precision improved substantially,
and the F-measure reached ∼0.85. This shows that our method has
achieved good results. For the image-based evaluation, all images
with defects were successfully identified, demonstrating the
stability of our method.

5.3.5 Comparison experiment: Numerous researchers carrying
out defect detection for surface inspection have commonly
examined steel [34], textile [35, 36], and wood [37, 38]. For
printing inspections, examinations have been generally performed
using paper materials and pharmaceutical capsules [1]. However, to
the best of our knowledge, no studies have investigated defect
detection for logotypes on 3D micro-textured surfaces, as
examined in this study. To verify the effectiveness of the proposed
method, we compared it with a phase only transform (PHOT) for
surface defect detection [39], which is based on a particular
transform for the removal of any regularities of arbitrary scales
from the target images and for preserving only irregular patterns,
such as defects. In addition to its high effectiveness in detecting
defects on irregularly textured surfaces, the objects they deal with
are somewhat comparable to the materials mentioned in this paper.
Furthermore, the authors disclosed their source codes and the
settings of the parameters.

Herein, we utilise 50 synthesised defect images and 20 real
defect images for comparison experiments. The implementation
was conducted using the source code disclosed, and the parameters
selected were those recommended by the respective authors.

Figs. 20 and 21 show some representative results for the
synthesised and real defects, respectively. 

As we can see from Figs. 20 and 21, around half of the defects
were detected by PHOT, which is roughly consistent with the
ground truth, whereas the proposed method could detect all of the
defects. For high-contrast defects, PHOT could obtain a rather
good detection performance. However, for low-contrast defects, it
did not achieve a good performance. In addition, from Fig. 21, we
can see that the defect detection performance of our method was
not dependent on the positions and was relatively high. Table 9
shows the pixel-level based performance evaluation, whereas Table
10 shows the image-based performance evaluation. From them, we
could see that PHOT can successfully detect ∼70% of the defects,
whereas the proposed method can successfully detect all defects.

5.4 Computation cost

Owing to our algorithm was designed to be applied in actual
production lines, its computational efficiency must meet certain
requirements. In this section, we consider the computational cost of
our proposed method. We will discuss two aspects, one based on
the image level, and the other based on the pixel level. For this, we
used a PC with a 3.5 GHz Intel Xeon CPU and 64 GB of RAM
running Windows 10.

The proposed algorithm consists of two parts: a training stage
and a detection stage. First, when we consider the computational
time during the training stage, 100 defect-free images with a pixel
size of 110 × 111 pixels were used to make defect-free MPPC
models. We created two versions of the programme, one in
MATLAB and the other in C++. The development environments
were MATLAB 2016a and Visual Studio 2013 along with the
Opencv2.4.11 library.

In the MATLAB version, we use the timing function in
MATLAB. In the C++ version, we used the clock timing function.
In the MATLAB version, the entire training process took 9548.69 s,

Table 6 Image-level based performance of defect detection
for different noise intensities
Noise intensity Detection rate, % False alarm rate, %
0 97 0
σ 96 0
2σ 96 1
3σ 89 7

 

Fig. 19  Some examples of defect detection results for different characters.
From the first row: test images, their ground truth images, the detected
results, and the filtered results

 
Table 7 Pixel-level based performance of defect detection
for different characters
Character Filter Recall Precision F-measure
H OFF 0.62 0.65 0.63

ON 0.83 0.97 0.90
U OFF 0.61 0.60 0.60

ON 0.80 0.92 0.86
A OFF 0.65 0.62 0.64

ON 0.88 0.96 0.92
W OFF 0.64 0.64 0.64

ON 0.78 0.89 0.83
E OFF 0.66 0.62 0.64

ON 0.87 0.89 0.88
I OFF 0.58 0.6 0.59

ON 0.73 0.95 0.83
 

Table 8 Image-level based performance of defect detection
for different characters
Character Detection rate, % False alarm rate, %
H 100 0
U 100 0
A 100 0
W 100 0
E 100 0
I 100 0
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whereas in C++, it took 111.06 s. For each pixel, the training stage
took 0.78 s in MATLAB, and 9.09 ms in C++.

Now, we consider the computational cost in the detection stage
for the same sized images. In the MATLAB version, the
computational time for each image was 19.58 ms.

Table 11 shows the computational time in the C++ version. Due
to the computational time is extremely short, the timing is
susceptible to certain aspects, for example swapping. We measured
an average computational time of 0.945 ms from eight trials using
the same image, i.e. 1.6 μs per pixel in MATLAB and 0.0773 μs per
pixel in C++, respectively.

6 Conclusions
After some preparations, such as a precise differentiation scheme
and the signed difference in the OCs, we analysed some statistical
behaviours of logotypes printed on the embossed surfaces that have
their own non-uniformity, where the kurtosis analysis was
effective. In addition, we proposed a novel model of statistical
similarity called multiple paired pixel consistency, or MPPC, using
OCs in defect-free logotypes printed on the embossed surface.

Based on MPPC models of defect-free images, we proposed a new
defect localisation algorithm, which is effective in the detection of
both synthesised and real defect images at both the pixel and image
levels.

For variations in size, illumination, noise, and characters
applied, we confirmed the performance of the proposed approach,
and the results of numerous experimental tests demonstrated the
effectiveness of the method for a precise defect localisation. Our
method achieves better results than some other state-of-the-art
defect detection methods. The recall, precision, and F-measure for
most of the results reached 0.85, 0.93, and 0.9, respectively. In
addition, the defect detection rate reached almost 100%.
Furthermore, the computational efficiency of our method is high.
The computational time for each image with a pixel resolution of
110 × 111 was 0.945 ms. This shows that our method can meet the
needs of actual industrial production in terms of accuracy and
computational consumption.

In future studies, if it becomes possible to conduct a detailed
analysis of the statistical characteristics in logotypes on the
embossed surfaces, we hope to design a schema to identify defect
types in several classes, which may contribute to increasing the
effectiveness of the quality control of a production line.
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